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Abstract-A boundary element method is developed for the large deflection analysis of thin elastic
plates resting on elastic foundation. The subgrade reaction may depend linearly (Winkler-type) or
nonlinearly on the deflection as well as on the point coordinates (nonhomogeneous subgrade).
Moderately large deflections are examined as described by the von Karman equations. The plate
may have arbitrary shape and its boundary may be subjected to any type of boundary condition.
The proposed method uses the fundamental solution of the linear plate theory and treats the
nonlinearities as well as the subgrade reaction as unknown domain forces. Numerical results are
presented to illustrate the method and demonstrate its effectiveness and accuracy.

I. INTRODUCTION

With the increased usc of strong and light weight structures many problems of nonlinear
deformations urisc. In m.my technical fields flexible plates find use with deflections which
ure of the order of m<lgnitude of the thickness of the plate but still sm<lll relative to the
overall dimensions. Such for example arc the fields of aircmft construction. shipbuilding.
hydrospace. transportation. building <lnd fluid tunk construction. While a linear amllysis
often provides useful inform<ltion in a structur'll problem. it can seldom provide insight
into actuul failures or the very many phenomena associated with nonlinear systems.

The governing equations for nonlinear behaviour of plates arc those proposed by von
Karman (Voil'mir. 1967) which describe the behaviour of moderately large deflections.
These equations are restricted to the condition that the shears. elongations and rotations
are small compared to unity. but the rotations m<lY be moderately large compared to
elongations and shears. This geometry condition is common when the deflections are of the
order of magnitude of the pl<lte thickness (Novozhilov. 1953).

Analytic solution methods. exact or approximate. depend on the shape of the plate.
Extensive literature on these methods can be found in Chia (1980). However. realistic
problems can be solved by numerical methods. The finite difference method has been largely
used. Nevertheless. this method becomes too sophisticated when the boundary does not
conform with a coordinate system. The finite clement method for large deflection of plates
is well established (Oden. 1972). More recently. the boundary element method (BEM) has
been developed to treat large deflections of plates (Kamiya and Sawaki. 1982; Tanaka.
1984; Ye and Liu. 1985; Nerantzaki and Katsikadelis, 1988; Katsikadelis and Nerantzaki.
1988).

The von Kilrman equations can describe large deflections ofplates on elastic foundation
if they are augmented with the subgrade reaction term. The solution to this problem
becomes more difficult even in the simplest case of Winkler-type subgrade reactions. To the
author's knowledge. the existing approximate solutions and numerical results are restricted
only to circular and rectangular plates on Winkler foundation (Sinha. 1963; Bolton. 1972;
Datta. 1975).

For small deflections (linear analysis) of plates resting on elastic foundation the BEM
has been well established by Katsikadelis and Armenakas (1984a.b). Katsikadelis and
Kallivokas (1986, 1988). Costa and Brebbia (1985) and Bezine (1988). rn this paper the
BEM is developed to analyze plates on elastic foundation governed by moderately large
deflections.
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Fig. I. Notations and coordinates.

The subgrade reaction may depend linearly or nonlinearly on the deflection as well as
on the point coordinates (nonhomogeneous foundation). The proposed method uses the
fundamental solution for the linear plate theory and treats the nonlinearities as well as the
subgrade reaction as unknown domain forces. The resulting integral equations are solved
numerically by developing an effective technique. Certain numerical examples are presented
to illustrate the method and demonstrate its efficiency and the accuracy of the results.

2. FORMULATION OF THE BOUNDARY VALUE PROBLEM

Consider a thin clastic plate of thickness h, occupying a two-dimensional arbitrary
shaped region R, bounded by a curve (} R and resting on an clastic foundation with subgrude
reaction p (Fig. I). The nonlinear behaviour of the plate for moderately large deflections
is governed by the dilTerential equations proposed by von Karman which in this case can
be written as (Voil'mir, 1967)

4 9 P II
V IV =D- D+ DL(w, F)

in R,

( I )

(2)

where II' = lI'(x, y) is the deflection function and F(x, y) is an Airy-type stress function for
the membrane stress; D = Eh 3/1 2( 1- v2

) is the flexural rigidity of the plate having elastic
constants E and v; 9 =g(x,y) is the transverse loading distributed on the plate;
p = p(x,y; 11') is, in general, a nonlinear function of the point (x,y) and of the deflection
1\'; and L( 11', F) is a nonlinear differential operator applied to II' and F and represents

(3)

L(II', 1\') is obtained by replacing F with II' in eqn (3). L(II', F) and L(II', If) define the
nonlinearity of the problem which is due to the coupling of the transverse deflection with
the membrane deformation.

The plate is subjected to the following boundary conditions on the boundary oR of
the plate;

F= {I

(4a)

(4b)

(Sa)
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(5b)

where %, = %,(5). {J, = {J,(S) (i = 1.2.3) and j'. =1'.(5) (k = \, 2) are functions specified on
cR. V·w and Mil' are the reacting transverse force and the bending moment along the
boundary and they are given as

where

ow ewv· ••·= Vw+ N - + N -
n en nr ot

(
22

W o~w)
Mw= -D -, +v-, .en- or-

[ c c (a~w)JVw= -D -V=w-(v-I)~ --en as on at

(6a)

(6b)

(7)

is the effective shearing force of the linear theory. The rest terms in eqn (6a) are due to the
contribution of the membrane force components Nn and Nnr in the transverse direction
(Dym and Shames. 1973). Using intrinsic coordinates and noting that (Katsikadelis. 1982)

(lW 2w
Dt = as'

a=\l' D~\l' Dw
-~.- - -- -I\-~

an Dr - (In iJs (Is •

eqns (6a.b) are written as follows:

[ (ii~O)JMil' = -D <[)+(v-I) cs! +I\X .

where the following notation has been used

(8a)

(8b)

ow ,
t'"\ = W X = - <[) = V-w
;U. on' .

a ,
'P = - V-wand 1\ = Io;(S)

an
(9)

is the curvature of the boundary. Expressions (8a.b) for Mil' and V·Il'. are convenient to
treat the case of nonvanishing prescribed membrane edge forces. It is apparent that all
kinds of boundary conditions with respect to the transverse deflection w (clamped edge.
simply supported edge. free edge. elastically supported edge. mixed boundary conditions)
may be treated by specifying appropriately the functions ~,(s). fJ,(s). On the other hand.
stress boundary conditions [eqns (5a.b)] are considered for the membrane stresses which
are rather more easily expressible in terms of the stress function (case of movable edge
subjected to prescribed inplane edge forces).

3. INTEGRAL EQUATION FORMULATION

For any function u(x. y) which is the solution of the biharmonic equation

(10)

the following integral representation may be obtained (Katsikadelis and Armenakas. 1984a)
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u(P)::: z'gdlT- v-V-u-u-V-/'--V'-u+ ;;--V-c ds,en en en en

R iR

1 ,
z':::-r-Inr. r=IP-QI. P.QeR

81t

(II )

( 12)

is the fundamental solution to eqn (I 0).
Applying the Laplacian operator to eqn (II) and taking into account that it is

V 4t' =V 2«%n)V 2v) ::: 0 in the boundary integrals. we obtain

(13)

Applying eqns (I I) and (13) to the functions II" and F satisfying eqns (I) and (2).
respectively. we obtain the following integral representations

- 2
1
n ifA,(r)n+Az(r)X+A~{r)<1>+A4(r)q.t] ds (14)

,H

F(P) = - 4~ ffA 4 {r)L{w. w) dCT- 2~ i[A 1(r)n+A z(r)X+A 3{r)<T>+A 4(r)'1'] ds (15)
H ,R

- 2~ f[A,(r)(l>+A 2(r)q.t]dS (16)

,'R

V
2
F(P):::: - 4~ ffA 2(r)L(w. w) dlT- 2

1
1t IfA,(r)<!>+A2(r)'1'] ds.

R ,R

in which n. X. <1>. q.t are defined by eqns (9) and n. x. <!>. '1' denote

'" if aF JI. ' .T, a ,
U :::: F. A::: on' W:::: V-F. T:::: on V' -F.

Moreover. the kernels Ar(r) (i:::: 1.2.3.4) are given by the following relations

a, cos cp
AI(r)::: -2n-V-r = ---en r

Cl'
1\3(r) :::: - 21t:l = -1(2r In r+ r) cos cp

en

(17)

( 18)

(19a)

(I9b)

(19c)
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(19d)

where !p is the angle between the directions of rand n (see Fig. I).
Equations (14) and (15) can give the solution of the problem if the eight unknown

boundary quantities 0, X,~, '1',0, g, <f> and'" involved in the boundary integrals as well
as the subgrade reaction p(w) and the six derivatives w..... w..... w,... f .... fn' F,.,. involved in
the domain integrals, are first established. We obtain the neCessary equations for the
determination of these unknown quantities by working as follows.

Using the procedure presented by Katsikadelis and Armenakas (1984a), two boundary
integral equations are obtained for the function w from eqns (14) and (16). Thus, letting
point P coincide with a point pEeR in eqn (14) and in its Laplacian. eqn (16). and noting
that the kernel A I(r) behaves like a double layer potential, we obtain the boundary integral
equations

-f(A,n+A~X+A)<1>+1\4'1') ds (20a)
.'R

Moreover. by differentiating eqn (14) twice with respect to x <tnd y, the integral rep
resentations of the functions 11'.<, 11'...,. II'n are obtained. Thus, we have

- 2~ f[(A duO + (A~)..X + (AJ)u~+ (A4 ) ..'1'] ds (2Oc)
,'H

- 2
J
1t f[(1\ I ),<},O+ (A~)....x+ (A J)•.,,<1>+ (1\4).,.'1'] ds (20d)

eR

- 2
1
1t i[(A I )"",0+ (A 2)",X+ (1\3)".,,<1> + (A 4).•,'I'] ds. (20e)

.,R

Similarly, using the integral representations (15) and (17), we obtain for function F

ttO= -~ ffA4L(W,II')dQ- f(A,n+l\~g+I\J<f>+A4"')dS (2Ia)
R ('It

1t<f> = - ~ f fA~L(w, 11') dQ- f (A,<f>+I\~"') ds (2Ib)
R ;R
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F.•.• (P) = - 4~ f f(A4),.,L(~" w) du- 2~ f [(A')u11+(A 1 )uX+ (A 3)•.•cf>+ (A4)•.• 'Pj ds
If ('R

(2 Ie)

F.f"(P) = - 4~ f f(A4)XI. L(W,W)dcr- 2~J[(AI)fl.n+(A1)nX+(AJ)ncl>+(A4)".'P]dS
II ,II

(2Id)

F"r(P) = - ~ f f (A4),:.. L(ll', IV) du - 2~ f [(A 1)......11+ (A 1)....X+ (A 3).1',.<11 + (A4)...... 'P] ds.
II ell

(2Ie)

where

cos2w
(A 1)" ::::: -(A1).... = - --1-'.. r

sin 2w
(A 1l ... = - --1-'. r

sin 2(1) sin cp-cos cp (A.I).,..,. = -sin 2w sin cp-cos Cp,
(A\)" = .

cos 2w sin cp A _ 21n r+2+cos 2(1)
(A 31... = - 2r ,( 4)n - 4 .

21n r+2-cos 2w sin 2w
(A 4 )". = 4 ' (A 4 )x... =-4- (22)

and w is the angle between the.t axis and r (see Fig. I).
Furthermore, using notations (9) and (18) and eqns (Sa,b), the boundary conditions

(4a,b) and (Sa,b) are written as

fl,X -D{J2 [<I>+(V-l)(~:~+I\X) ] = fJ3

n=y, X=h

(23a)

(23b)

(23c,d)

Relations (14), (20). (21) and (23) provide the necessary equations to establish the unknown
quantities. Equations (23c.d) are directly eliminated from eqns (21) and the unknown
quantities are reduced to 13. However, a further reduction of the unknowns is not possible,
because, in a general case, substitution of eqns (23a,b) into eqns (20) yields integro~

differential equations whose solution involves considerable difficulties. For this reason,
it is more convenient to treat eqns (23a,b) as boundary differential equations using the new
boundary differential integral equation method developed by Katsikadelis and Armenakas
(1989). Thus, eqns (14), (20), (21) and (23a,b) are considered as a system of 13 simultaneous
equations, from which the unknown quantities can be established.

The bending moments, the twisting moment, and the membrane forces are obtained
by first computing the derivatives from eqns (20) and (21) and, subsequently, using the
relations
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Fig. 2. Boundary discretization (N boundary elements) and domain discretization (four finite
sectors).

1873

(24)

4. SOLUTION PROCEDURE

An analytical solution of the system of eqns (14). (20), (21) and (23a,b) is out of
question. However, a numerical solution is feasible. Thus. the boundary integrals can be
approximated using OEM with N constant elements and parabolic approximation of the
curved boundary elements. while the derivatives in the boundary differential equations
[(23<1.b)] can be approxim<lted by unevenly spaced finite ditference schemes. Concerning the
domain integrals involving the unknown second derivatives and the subgrade reaction.
they can be evaluated using M-point Gauss integration over domains of arbitrary shape
(Nerantzuki and Katsikadelis. 1988: Katsikadclis. 1991: see also the Appendix). Sub
sequently, upplicution of the collocution technique at the N boundary nodal points and at
the M Gauss integration points inside the domain R (see Fig. 2) yields the necessury
equations for the unknown values of the boundary and domain quantities.

Thus. using the procedure described previously and grouping the discretized equations
appropriately, we obtuin the following nonlinear set of algebraic equations

(2541)

("I = [B,I+(C,][fl+[D,)[p) +[A" An A" A,,) [~] (25b)

(25c)

(25d)
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(15el

where

[wJ is an Al x 1 vector of the unknown deflections at the .\1 Gauss points inside
R; [w u W.<I_ w,.]. [Fu Fn F11J are 3Jf x 1 vectors of the unknown values of second
derivatives at the !..t Gauss points: n. X. 4>. '1'. <b. 'l' are N x I vectors of the unknown
values of the boundary quantities at the N boundary nodal points; [r]. [fl. [p] are 1\1 x I
vectors of the unknown values of the functions f -= H',,):, + ll'"j~, - 2ll',./"..
l= 2(11',,11',.)-11';,) and p =p(w) at the Gauss points: A,ii' A'ii. B.. 8•. Cd' e,i' D., are
consHlnt matrices.

Equations (25a) are linear with respect to the boundi.lry quantities n. X, 4>. 'I' and they
can be solved for them and substituted into eqns C~5b) and (25c). Similarly. eqn (25d) can
be solved for the boundary quantities <b. '" and substituted into egn (25C). These eliminations
yield the following nonlinear system of algcbruic equations:

(26)

whl:rc w, lJ and 0 arc thc unknown VCl:tors of thc va IlIl:S of the ddlcctiolls If" the derivatives
(11",.),. (II'"),, (II',,), and (1""),, (F,,),. (F.,)" respectively. at thc 1\.1 Gauss points within the
domi.lin of the plate; II" <In: constant matril.:\:s and G. arc l.:onstallt vectors, Finally, p(w).
f( U. 0) andl( V) arc the VCl:Lors or tht: Vi.t1ucs ur thc nonlinear I'unr.:tions fI( \1'). L( \I'. n. and
L(ll', \t.) at the Gauss points. In cvaluating the constant matrices in I.:'tillS (15) cert.tin singular
domain intcgmls occur, which arc computed using the tcchniquc presented in Katsikadclis
<lnd Nerantzaki (19SS).

Equations (26) arc solved itcratively by step increasing the loading to yield the values
of II" W" •...• F", at the Gauss points. Backsubstitution into egns (25) gives the unknown
boundary quantities at the nodal boundary points. Subsequently, the dellection and stn:ss
functions are computed at any point Pe R using the discretizeJ form of eqns (14) and
(15).

5. NUMERICAL RESULTS

On the basis of the analysis and the numerical procedure presented in the previous
sections, a computer program has been written and numcrical results have been obtaincd.
Since the main purpose of this paper is to present the basic principles of the proposed
method and demonstmte its etliciency. the obwined numerical results arc limited to u
circular plate with two different types of boundary condition, for which numerical results
arc also available for comparison. (n all the ex.troplcs treated, the numerical results have
been obtained using 60 constant boundary clements and 100 Gi.1USS nodal points by dividing
the interior of the plate into four sectors on each of which a 25-point Gauss···Radau
integration is performed. For the iterative solution of eqns (26) about 250 iterations were
needed at each load step 6q = 1and for a convergence equal to 10 .j criterion. The example
problems treated are the following;

(I) A uniformly loaded circuli.lr plate with radius a and d.llnpcd movable (eM) edge
(i.e. H' =CWICfl = F = ()F/2n = 0 on the boundary) resting on ,I Wink[cr-typl: elastic
foundation. The numerical results have been obtained for ai/I == 50. \' -= 0,30 and arc
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Fig. 3. Central detlection ,i· versus the load Ii in a CM circular plate (,' = 0.30) resting on Winkle:r
type: dastic foundation.
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fig, 4. Ccntral memhrane (a;"l and hending (a~) stresses wrSllS central del1eetion Ii' in a eM circular
plate (v = 0,3) resting on a Winkler-type dastic foundation (). = 100.200).

Tahle: I, Del1e:ctions. bending and me:mhrane stre:sse:s along the: radius
in a uniformly loaded CM circular plate re:sting on a Winkle:r·typc

dastic foundation (v = 0,3. Ii = 15. i. = 100)

rjd ~,. -b -b a-t," a:"G, G,

0.09K l.IOK 2.547 2.553 0.536 0,521
0.304 0.961 2.366 2.466 0.470 0.329
0.562 0.592 1.277 1.936 0.303 -0.113
O.KOO 0.179 -1.M20 0.403 0,127 -0.47K
0,960 0.009 -5,490 - 1.417 0.040 -0.468

presented in Figs 3 and 4 und Table I. In Fig. 3 the central deflection lV = wlh is
plotted versus the loud ii = qa41Eh 4 for two values of the subgrade reaction parameter
i. = ka 41 D of the Winkler-type el'lstic foundation. p = kw, k being the constant subgrade
modulus. From this figure it is scen that the oblained resulls are in very good agreement
with those obtained by Bollon (1971). However, as shown in Fig. 4, significant devi·
ations are observed in the radial bending stress B~ = a~a2/Eh2 (a~ = 6M,lh 2

) between
the results given by Bolton (1972) and the corresponding ones obtained by the proposed
method. The unalytical results have been obtained using a series solution (Timoshenko
and Woinowsky-Krieger. 1959). The ditferences become larger as i. and ii increase.
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Fig. 5. Central deflection 10' versus the load ii in a SM circular plate Iv = O.3) resting on a Winkler
type elastic foundation,
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Fig. 6. Central membrane (a;,,) and bending (a~) stresses versus central dellcction ,i' in a SM circular
phlle (v = 0.3) resting on a Winkler·type elastic foundation (). = WO.2(0),

Since for ). #: 0 there is no exact solution, one cannot tell with certainty which results
are more accurate. Nevertheless, there are two reasons which indicate that our results
are more accurate. (a) For the special case ;. = O. the results obtained herein are in full
agreement with those obtained by an analytic series solution (Nerantzaki and Kat
sikadelis, 1988; Timoshenko and Woinowsky-Krieger, 1959). (b) In our procedure,
the curvature components Ww w". and II',.,. of the deflection are first established and
subsequently are used to compute deflections which coincide with those given by Bolton
(1972). WithregardstotheradialmembranestressO'~n = ar;a~/£h~(a~n = N,/h) it isscen
from the same figure. that it varies negligibly with ;.. The obtained results arc in good
agreement with those given by Bolton (1972). Finally, in Table I, the variation of the
deflection li\ radial stresses a~ and ar; and tangential stresses O'~ and a;n along the radius,
for ii = 15 are presented. These results are new and thus, their accuracy cannot be
checked.

(2) A uniformly loaded circular plate with ntdius a and simply supported movable (SM)
edge (i.e. 1\' = Mil' = F = c'F/c'lI = 0 on the boundary) resting on a Winkler-type elastic
foundation. The results have been obtained for a/II = 50. \. = 0.30 and are presented
in Figs 5 and 6 along with those given by Bolton (1972). As it is seen from these figures,
there is very good agreement in the deflection and the radial membrane stress O'r;.
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However. the deviation in the radial bending stress. as in the case of a eM plate. is not
negligible.

6. CONCLUDING REMARKS

An efficient boundary element approach is developed for the nonlinear analysis of thin
elastic plates resting on elastic foundation. The method is not actually a pure boundary
element method. since it also requires domain discretization to compute unknown quantities
in the interior of the plate. However. the linear equations are still defined by the boundary
discretization and thus. the method retains most of the advantages over the domain-type
methods. It is worth mentioning that:

(a) The proposed method is suitable for analyzing plates having arbitrary shape and
subjected to any type of boundary condition.

(b) The subgrade reaction may depend linearly or nonlinearly on the deflection.
(c) The method is well-suited for computer-aided analysis.
(d) Accurate results are obtained using a relatively small number of boundary and

domain nodal points.
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APPENDIX

A Guu.uittn quudruturc teclrnique for ,,'.qiofl.f ofurhitrury sirup"
We review here the finite sector method (FSM) for the evalu;ltion ofdomain integrals over regions ofMhitrary

shape.
Consider the integral
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Fig. A l. Two-dimensional domain divided into four sectors.

(AI)

where R is a two-dimensi,'nal region of arbitrary shap<:. We divIde the region into a linite number of sectors by
straight lines emanating from a point inside the region (common vertex of sectors) and reaching the boundary
(sec Fig. A I). For domains with comple" geometry more than one vertex may be used. Subsequently. each sector
is mapp<:d onto a triangle on which a re,ldy-to-usc Gauss Radau integration scheme is employed. Thus. the
integral (A I) may be written <IS

f f,,((I) dl1v = .t, f f,,((I),J·(Q),dl1 v = .~, I~' (;(/((1: )IJ.«(I~ )1.
R H:

(A2)

where S is the numher of Ihe ,eC1ors; fII IS the nlllnher of G;IlISS R<ldau points in the kth sectur; (;. Q~

(I' 1.2..... fill arc Ihe wel~ht faclors <lnd Ihe (i<luss R<ldau pOlllls in the k Ih sector: .\lld J.((I~) <Ire the valucs
or the Jacool.1Il ,.1' the transformatilln whid. tr<lnSfllrms Ihe k th S.·ct,'r onl,' thc tri'\llglc nt.

The transformation that m<lps the sector onlo a Irianglc is given hy Kalsikaddis (19')1) as

_ (. ',) ~\' ,~/ )., .... ).

(AJ)

where.i' '" /U) is the e41wtion of the sector hase in lo<:al coordinates (sec rig. A2).
When this techni4ue is used with BEM, the sector h<lsc consists of a group of consecutive boundary dements

and it is convcnient to appru.,im.tle the function .i' =nn hy an interpolating polynomial r;llher than using the
an.liytic e.,pression of the curve. Thus, if a polynomial appro.\tm<ltion IS used. the sectM h;lse is ehllsen su that
it can be represented as

(A4)

The eoefl1cients :x, (i = O. l. 2•...• tl) arc computed from the coordinates of the nodal and/or the extn:me points
of the boundary demenls.

------"----- --
Fig. A2. Mapping of a sector onto a tri.mglc.


